
AAAI-97 Tutorial SP2Williams/Nayak SP2-122

Model-based Reactive Planning
How does it relate to STRIPS planning?
STRIPS: IF clear(top) and on(A,B)
Planning: THEN Delete on (A,B) and clear(top)

Add on(top,B)

Model-based
Reactive
Planning:

Partially observability
exogenous effects
indirect control
concurrent

ValveValve Driver

AAAI-97 Tutorial SP2Williams/Nayak SP2-123

Comparing MRP and STRIPS

Model-based Reactive Planning
• action representation

– state transitions ρτ

– co-temporal interactions ρΣ

• state variables change through
transitions or through interactions.

• Transitions are controlled by
establishing control values which
interact with internal variables.

• State changes may not be
preventable.

• Enabling one transition may
necessarily cause a second
transition to occur.

STRIPS Planning
• action representation

– strips operators with precondition
and add/delete as effects.

• state variables only change
directly by operator add/delete.

• Operators are invoked directly

• State is held constant when
operators are not invoked.

• Operators are invoked one at a
time.

AAAI-97 Tutorial SP2Williams/Nayak SP2-124

How Burton Achieves Reactivity

Problem: Model-based Planning is NP Hard.
Solution:
• Model compilation eliminates cotemporal interactions ρΣ,

hence presolving NP hard part while preserving expressivity.
• Exploit fact that hardware typically behaves like STRIPS ops.

– individual controllability & persistance

• Exploit requirement that the planner avoid damaging effect.
• Exploit causal, loop-free structure of hardware topology.
• Compile transitions into a compact set of concurrent policies.

Burton Model-based Reactive Planner: [Williams & Nayak 97]

Generates first plan action in average case constant time.

AAAI-97 Tutorial SP2Williams/Nayak SP2-125

Driver Valve Example
Valve Driver dr

dcmdin = on dcmdin = off

dcmdin = reset

On

Off

Resettable

Permanent
failure

Valve vlv

Closed

Open Stuck
open

Stuck
closed

vcmdin = open vcmdin = close

• dr = resettable & dcmdin = reset
⇒ next (dr1 = on)

• dr1 = on & dcmdin = open ⇒
vcmdin = open

• . . .

• vlv = closed & vcmdin = open ⇒
next (vlv = open)

• vlv = open & flowin = pos ⇒
flowout = pos

• . . .

vcmdindcmdin

flowin

flowout

AAAI-97 Tutorial SP2Williams/Nayak SP2-126

1. Model Compilation
Valve Driver dr

dcmdin = on dcmdin = off

dcmdin = reset

On

Off

Resettable

Permanent
failure

Valve vlv

Closed

Open Stuck
open

Stuck
closed

dr = on,
dcmdin = open

dr=on
vcmdin = close

vcmdindcmdin

flowin

flowout

Idea:
Eliminate hidden variables (vcmdin) and cotemporal interactions ρΣ ,
resulting in transitions that depend only on control variables (dcmdin) and
state variables (dr,vlv).

AAAI-97 Tutorial SP2Williams/Nayak SP2-127

Models are Compiled through
Prime Implicate Generation
• Compiled transitions are all formula of the form

Φi ⇒ next(yi = ei)
implied by the original transition specification,
where Φi is a smallest conjunction without hidden variables
(i.e., prime implicates).

• Example:
vlv = closed & vcmdin = open ⇒ next (vlv = open)
dr1 = on & dcmdin = open ⇒ vcmdin = open

compile to:
vlv = closed & dr = on & dcmdin = open ⇒ next (vlv = open)

• 40 seconds on SPARC 20 for 12,000 clause spacecraft model.

AAAI-97 Tutorial SP2Williams/Nayak SP2-128

Simplifying to Strips

• Difference 1: Transitions can occur without control actions.
– tub = empty & faucet = on ⇒ next (tub = non-empty)

• Requirement 1:
– Each control variable has an idling assignment.
– No idling assignment appears in any transition.
– The antecedent of every transition includes a non-idling control

assignment.

• Example:
– drcmdin has idling value “none” and non-idling dcmdin = open
– vlv = closed & dr = on & dcmdin = open ⇒ next (vlv = open)

AAAI-97 Tutorial SP2Williams/Nayak SP2-129

Simplifying to Strips (cont.)

• Difference 2: Control actions can invoke multiple transitions.
– vlv1 = closed & dr = on & dcmdin = open ⇒ next (vlv1 = open)
– vlv2 = closed & dr = on & dcmdin = open ⇒ next (vlv2 = open)

• Definition: The control(state) conditions of a transition are the
control(state) variable assignments of its antecedent condition.
– state condition: vlv1 = closed & dr = on
– control condition: dcmdin = open

• Requirement 2:
– No set of control conditions of one transition is a proper subset of the

control conditions of a different transition.

But STRIPS is still intractable.

AAAI-97 Tutorial SP2Williams/Nayak SP2-130

Reasons Search is Needed

1) An achieved goal can be clobbered by a subsequent goal.
– e.g., achieving dr = off and then vlv = open clobbers dr = off.

2) Two goals can compete for the same variable in their subgoals.
– e.g., latch1 and latch2 compete for the position of switch sw.

3) A state transition of a subgoal variable has irreversible effect.
– e.g., assume sw can be used once, then latch1 must be latched before

latch2.

To achieve reactivity we eliminate all forms of search.

Cmd
dr vlv

latch1
latch2

sw
data

AAAI-97 Tutorial SP2Williams/Nayak SP2-131

Exploiting Causality to Avoid Threats

• Observation: Component schematics tend not to have feedback
loops.

• The Causal Graph G of compiled transition systems S is a
directed graph whose vertices are state variables. G contains
an edge from v1 to v2 if v1 occurs in the antecedent of v2’s
transition.

Requirement 3: The causal graph must be acyclic.
How can this causality be exploited?

dr vlv

dcmdin

Cmd
dr vlv

computer bus
control

remote
terminal

AAAI-97 Tutorial SP2Williams/Nayak SP2-132

Exploiting Causality to Avoid Threats

off

Cmd

closed

off open

Goal:

Current:

dr vlv

Idea: Achieve goals by working from effects to causes (e.g.,
vlv then dr), completing one goal before starting the next.

• work on vlv = closed
– work on dr = on

• next-action: Cmd = dr-on

– next action: Cmd = vlv-close

• work on dr = off
– next action: Cmd = dr-off

AAAI-97 Tutorial SP2Williams/Nayak SP2-133

How to Avoid Clobbering Sibling Goals

• The only variables necessary to achieve y = e are the ancestors
of y, y can be changed without affecting its descendants.

• To avoid clobbering achieved goals Burton solves goals in an
upstream order.

• Upstream order corresponds to achieving goals in order of
increasing depth first number.

13
12
9

11
8

10
7
4

6
3

5
2
1

unaffectedaffected

AAAI-97 Tutorial SP2Williams/Nayak SP2-134

How to Avoid Clobbering Shared Subgoals
• Shared ancestors of sibling goals are required to establish both

goals.

• Ancestors are no longer needed once goal has been satisfied.

• Solution: To avoid clobbering shared subgoal variables, solve
one goal before starting on next sibling.

Generates first control action first!

13
12
9

11
8

10
7
4

6
3

5
2
1

13
12
9

11
8

10
7
4

6
3

5
2
1Shared

unaffectedaffected

AAAI-97 Tutorial SP2Williams/Nayak SP2-135

Burton: Online Algorithm (incomplete)

NextAction(initial state θ, target state γ, compiled system S’)
• Select unachieved goal: Find unachieved goal assignment with

the lowest topological number. If all achieved return Success.
• Select next transition: Let ty be the transition graph in S for

goal variable y. Nondeterministically select a path p along
transitions in ty from ei to ef. Let SC and CC be the state and
control conditions of the first transition along p.

• Enable transition: Control = NextAction(θ,SC,S’). If Control =
Success then state conditions SC are already satisfied, return CC
to effect transition. If Failure return it. Otherwise Control
contains control assignments to progress on SC. Return Control.

Some search still remains

AAAI-97 Tutorial SP2Williams/Nayak SP2-136

Exploiting Safety

• Requirement 4: Only reversible transitions are allowed, except
when repairing a component.

Rationale: Irreversible actions expend non-renewable resources.
Should only be performed after careful (human?) deliberation.

Valve Driver

Turn on Turn
off

Turn off

On

Off

Resettable
failure

Permanent
failure

Closed

Pyro Valve
Open Stuck

open

Stuck
closed

Open
disallowedallowed

Reset

AAAI-97 Tutorial SP2Williams/Nayak SP2-137

Using Reversibility to Avoid Deadend
(Sub) Goals
Lemma:
• A & B is reachable from θ by reversible transitions exactly

when A and B are separately reachable from θ by reversible
transitions.

Idea:
• Precompute and label all assignments that can be reversibly

achieved from initial state θ.
• Only use assignments labeled reversible as (sub)goal, and

transitions involving reversible assignments.
• Exploit Lemma to test if top-level goals are achievable.

A
B

A
B

A
B

A
B

undoachieve A achieve B

AAAI-97 Tutorial SP2Williams/Nayak SP2-138

Defining Reversibility

Definition:
• An assignment y = ek can be Reversibly achieved starting at y

= ei if there exists a path along Allowed transitions from
initial value ei to ek and back.

• A transition is Allowed if all its state conditions are
Reversible.

dcmdin = on dcmdin = off

dcmdin = reset

On

Off

Resettable

Permanent
failure

Closed

Open Stuck
open

Stuck
closed

dr = on,
dcmdin = open

dr=on
vcmdin = close

AAAI-97 Tutorial SP2Williams/Nayak SP2-139

Burton: Reversibility Labeling
Algorithm
LabelSystem(initial state θ, compiled system S’)
For each state variable y of S’ in decreasing topological order:
• For each transition τy of y, label τy Allowed if all its state

conditions are labeled Reversible.
• Compute the strongly connected components (SCCs) of the

Allowed transitions of y.
• Find y’s initial value y = ei in θ. Label each assignment in the

SCC of y = ei as Reversible.

dcmdin = on dcmdin = off

dcmdin = reset

On

Off

Resettable

Permanent
failure

Closed

Open Stuck
open

Stuck
closed

dr = on,
dcmdin = open

dr=on
vcmdin = close

AAAI-97 Tutorial SP2Williams/Nayak SP2-140

Burton: Online Algorithm

NextAction(initial state θ, target state γ, compiled system S’,true?)
• Solvable goals?: When top? = True, unless each goal g in γ is

labeled Reversible, return Failure.
• Select unachieved goal: Find unachieved goal assignment with

the lowest topological number. If all achieved return Success.
• Select next transition: Let ty be the transition graph in S for

goal variable y. Find a path p in ty from ei to ef along
transitions labeled Allowed. Let SC and CC be the state and
control conditions of the first transition along p.

• Enable transition: Control = NextAction(θ,SC,S’). If Control =
Success then state conditions SC are already satisfied, return CC
to effect transition. Otherwise Control contains control
assignments to progress on SC. Return Control.

AAAI-97 Tutorial SP2Williams/Nayak SP2-141

Incorporating Repair Actions

Definition: A repair is a transition from a failure assignment to a
nominal assignment.

Idea:
• Burton never uses a failure assignment to achieve a goal if the

failure is repairable.
• Repair minimizes irreversible effects. If y is assigned failure

ef , Burton traverses allowed transitions from ef to the first
nominal assignment reached (nominal SCC w lowest number).

• If a failure assignment is not repairable then it can be used.

AAAI-97 Tutorial SP2Williams/Nayak SP2-142

Eliminating Cost of Finding Transition Paths:
Generating Concurrent Policies
• NextAction is O(e*m) where

– e is the number of transitions for a single variable y.
– m is the maximum depth in the causal graph.

• Compute a feasible policy πy (ei,ef) for variable y, where
– ei is a current assignment
– ef is a goal assignment
– πy (ei,ef) returns the sorted

conditions of the first transition
along a path from ei to ef.

Goal
Current open closed

open

closed

stuck Failure Failure

Idle

Idledr = on
dcmdin=open

dr = on
dcmdin=close

Closed

Open Stuck
open

Stuck
closed

dr = on,
dcmdin = open

dr=on
vcmdin = close

vlv

table
lookup

AAAI-97 Tutorial SP2Williams/Nayak SP2-143

Burton computes next action (step 1)

Goal
Current

open closed

open

closed

stuck fail fail

idle

idledr = on
dcmdin=open

dr = on
dcmdin=close

Goal
Current

on off

on

off

reset
failure

dcmdin =
reset

idle

idle
dcmdin = on

dcmdin = off

off

Cmd

closed

off open

12

dcmdin= on

dcmdin =
reset

Goal:

Current:

dr vlv

AAAI-97 Tutorial SP2Williams/Nayak SP2-144

Burton computes next action (step 2)

Goal
Current

open closed

open

closed

stuck fail fail

idle

idledr = on,
cmdin = open

dr = on ,
cmdin = close

Goal
Current

on off

on

off

reset
failure

idle

idle

off

Cmd

closed

on open

12

cmdin = close

dcmdin =
reset

dcmdin = on

dcmdin = off

dcmdin =
reset

Goal:

Current:

dr vlv

AAAI-97 Tutorial SP2Williams/Nayak SP2-145

Failure occurs during plan execution
Burton computes next action (step 3)

Goal
Current

open closed

open

closed

stuck fail fail

idle

idle

Goal
Current

on off

on

off

reset
failure

dcmdin =
reset

idle

idle

off

Cmd

closed

on -> reset failure closed

12

cmdin = reset

Goal:

Current:

dr vlv

dr = on,
cmdin = open

dr = on ,
cmdin = close

dcmdin =
reset

dcmdin = on

dcmdin = off

AAAI-97 Tutorial SP2Williams/Nayak SP2-146

Burton computes next action (step 4)
completing plan

Goal
Current

open closed

open

closed

stuck fail fail

idle

idle

Goal
Current

on off

on

off

reset
failure

dcmdin =
reset

idle

idle

off

Cmd

closed

on closed

12

cmdin = off

Goal:

Current:

dr vlv

dr = on,
cmdin = open

dr = on ,
cmdin = close

dcmdin =
reset

dcmdin = on

dcmdin = off

AAAI-97 Tutorial SP2Williams/Nayak SP2-147

Burton Complexity: ConstantAverage
Cost
Cost of generating the first action:
• Worst Case: Maximum depth of causal graph.
• Average Cost: Constant time.

– Each edge of the goal/subgoal tree traversed twice.
– Each node of the goal/subgoal tree generates one action.
– # edges < 2 * # nodes.

Subgoals

